Instance Similarity Deep Hashing for Multi-Label Image Retrieval

نویسندگان

  • Zheng Zhang
  • Qin Zou
  • Qian Wang
  • Yuewei Lin
  • Qingquan Li
چکیده

Hash coding has been widely used in the approximate nearest neighbor search for large-scale image retrieval. Recently, many deep hashing methods have been proposed and shown largely improved performance over traditional featurelearning-based methods. Most of these methods examine the pairwise similarity on the semantic-level labels, where the pairwise similarity is generally defined in a hard-assignment way. That is, the pairwise similarity is ‘1’ if they share no less than one class label and ‘0’ if they do not share any. However, such similarity definition cannot reflect the similarity ranking for pairwise images that hold multiple labels. In this paper, a new deep hashing method is proposed for multi-label image retrieval by re-defining the pairwise similarity into an instance similarity, where the instance similarity is quantified into a percentage based on the normalized semantic labels. Based on the instance similarity, a weighted cross-entropy loss and a minimum mean square error loss are tailored for loss-function construction, and are efficiently used for simultaneous feature learning and hash coding. Experiments on three popular datasets demonstrate that, the proposed method outperforms the competing methods and achieves the state-of-the-art performance in multi-label image retrieval.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Multi-label Hashing for Large-Scale Visual Search Based on Semantic Graph

Huge volumes of images are aggregated over time because many people upload their favorite images to various social websites such as Flickr and share them with their friends. Accordingly, visual search from large scale image databases is getting more and more important. Hashing is an efficient technique to large-scale visual content search, and learning-based hashing approaches have achieved gre...

متن کامل

Deep Multiple Instance Hashing for Object-based Image Retrieval

Multi-keyword query is widely supported in text search engines. However, an analogue in image retrieval systems, multi-object query, is rarely studied. Meanwhile, traditional object-based image retrieval methods often involve multiple steps separately. In this work, we propose a weakly-supervised Deep Multiple Instance Hashing (DMIH) framework for object-based image retrieval. DMIH integrates o...

متن کامل

Locality Constrained Deep Supervised Hashing for Image Retrieval

Deep Convolutional Neural Network (DCNN) based deep hashing has shown its success for fast and accurate image retrieval, however directly minimizing the quantization error in deep hashing will change the distribution of DCNN features, and consequently change the similarity between the query and the retrieved images in hashing. In this paper, we propose a novel Locality-Constrained Deep Supervis...

متن کامل

Improved Search in Hamming Space using Deep Multi-Index Hashing

Similarity-preserving hashing is a widely-used method for nearest neighbour search in large-scale image retrieval tasks. There has been considerable research on generating efficient image representation via the deep-network-based hashing methods. However, the issue of efficient searching in the deep representation space remains largely unsolved. To this end, we propose a simple yet efficient de...

متن کامل

An Efficient Hyperspectral Image Retrieval Method: Deep Spectral-Spatial Feature Extraction with DCGAN and Dimensionality Reduction Using t-SNE-Based NM Hashing

Hyperspectral images are one of the most important fundamental and strategic information resources, imaging the same ground object with hundreds of spectral bands varying from the ultraviolet to the microwave. With the emergence of huge volumes of high-resolution hyperspectral images produced by all sorts of imaging sensors, processing and analysis of these images requires effective retrieval t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018